

LOW POWER 256K X 16 (4 MEG) STATIC CMOS RAM

FEATURES

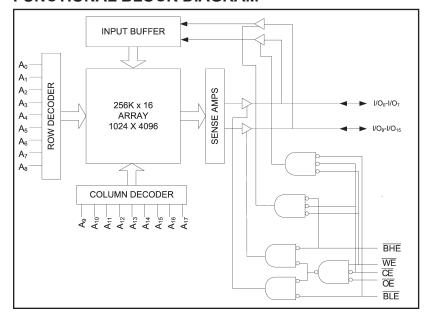
- Fast Access Time 55 ns
- Low Power Operation
- Single 5V±10% Power Supply
- 2.0V Data Retention
- Easy Memory Expansion Using CE and OE Inputs
- **■** Fully TTL Compatible Inputs and Outputs

- Advanced CMOS Technology
- Fast t_{op}
- Automatic Power Down when deselected
- Packages
 - 44-Pin 400 mil TSOP II

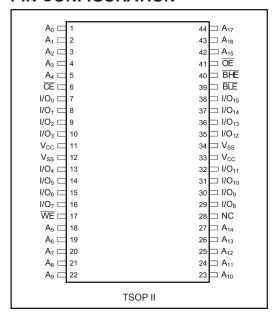
DESCRIPTION

The P4C1041L is a 262,144 words by 16 bits high-speed CMOS static RAM. The CMOS memory requires no clocks or refreshing, and has equal access and cycle times. Inputs are fully TTL-compatible. The RAM operates from a single $5.0V \pm 10\%$ tolerance power supply.

Access times of 55 nanoseconds permit greatly enhanced system operating speeds. CMOS is utilized to reduce power consumption to a low level.


The P4C1041L device provides asynchronous operation with matching access and cycle times. Memory locations

are specified on address pins \underline{A}_0 to \underline{A}_{17} . Reading is accomplished by device selection (\overline{CE}) and output enabling (\overline{OE}) while write enable (\overline{WE}) remains HIGH. By presenting the address under these conditions, the data in the addressed memory location is presented on the data input/output pins. The input/output pins stay in the HIGH Z state when either \overline{CE} or \overline{OE} is HIGH or \overline{WE} is LOW.


The P4C1041L comes in a 44-Pin 400 mil TSOP II package.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

MAXIMUM RATINGS(1)

Sym	Parameter	Value	Unit
V _{cc}	Power Supply Pin with Respect to GND	-0.5 to +7.0	٧
V _{TERM}	Terminal Voltage with Respect to GND	-0.5 to V _{cc} + 0.5	٧
T _A	Operating Temperature	-40 to +85	°C
T _{BIAS}	Temperature Under Bias	-40 to +85	°C
T _{STG}	Storage Temperature	-65 to +150	°C
I _{out}	DC Output Current	20	mA

RECOMMENDED OPERATING CONDITIONS

Grade ⁽²⁾	Ambient Temp	GND	V _{cc}
Commercial	0°C to 70°C	0V	5.0V ± 10%
Industrial	-40°C to +85°C	0V	5.0V ± 10%

CAPACITANCES⁽⁴⁾

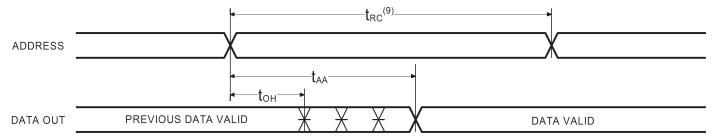
 $(V_{CC} = 5.0V, T_A = 25^{\circ}C, f = 1.0MHz)$

Sym	Parameter	Conditions	Тур	Unit
C _{IN}	Input Capacitance	V _{IN} =0V	6	pF
C _{OUT}	Output Capacitance	V _{OUT} =0V	8	pF

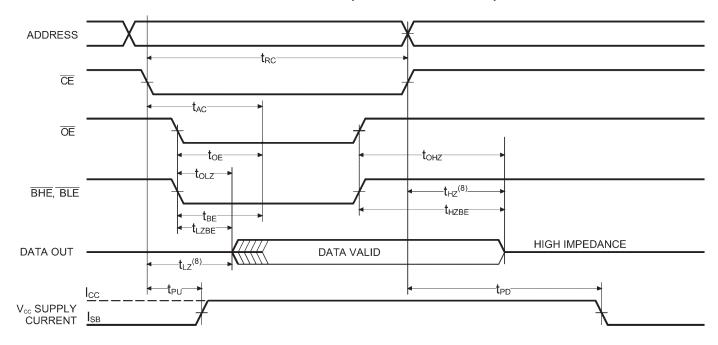
DC ELECTRICAL CHARACTERISTICS

(Over Recommended Operating Temperature & Supply Voltage)(2)

Sym	Parameter	Test Conditions	Min	Max	Unit
V _{IH}	Input High Voltage		2.4	V _{cc} + 0.3	V
V _{IL}	Input Low Voltage		-0.2	0.6	V
V _{OL}	Output Low Voltage (TTL Load)	I _{OL} = +2 mA, V _{CC} = Min		0.4	V
V _{OH}	Output High Voltage (TTL Load)	I _{OH} = -1 mA, V _{CC} = Min	2.4		V
ILI	Input Leakage Current	V_{CC} = Max, V_{IN} = GND to V_{CC}	-1	+1	μA
I _{LO}	Output Leakage Current	$V_{cc} = Max,$ $\overline{CE} = V_{IH},$ $V_{out} = GND \text{ to } V_{cc}$	-1	+1	μΑ
I _{SB1}	Standby Power Supply Current (CMOS Input Levels)	$\overline{\text{CE}} \ge \text{V}_{\text{CC}} - 0.2\text{V},$ $\text{V}_{\text{CC}} = \text{Max},$ $\text{f} = 0$, Outputs Open, $\text{V}_{\text{IN}} \ge \text{V}_{\text{CC}} - 0.2\text{V}$ or $\text{V}_{\text{IN}} \le 0.2\text{V}$	_	50	μΑ
I _{cc}	Dynamic Operating Current	Cycle Time = Min, $\overline{CE} = V_{IL},$ $I_{I/O} = 0 \text{ mA},$ Other pins at V_{IH} or V_{IL}		60	mA
I _{CC1}	Dynamic Operating Current (CMOS)	Cycle Time = 1 μ s, $\overline{CE} \le 0.2V$, $I_{VO} = 0$ mA, Other pins at 0.2V or V_{CC} - 0.2V		10	mA


AC ELECTRICAL CHARACTERISTICS—READ CYCLE

 $(V_{CC} = 5V \pm 10\%, All Temperature Ranges)^{(2)}$

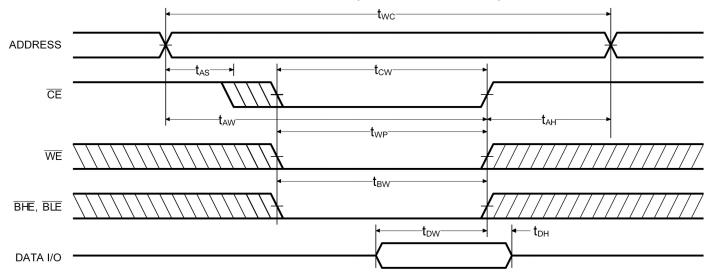

0	Barrandari	-5	1114	
Sym	Parameter	Min	Max	Unit
t _{RC}	Read Cycle Time	55		ns
t _{AA}	Address Access Time		55	ns
t _{AC}	Chip Enable Access Time		55	ns
t _{oe}	Output Enable Access Time		30	ns
$t_{\scriptscriptstyle LZ}$	Chip Enable to Output in Low-Z	10		ns
t _{olz}	Output Enable to Output in Low-Z	5		ns
t _{HZ}	Chip Disable to Output in High-Z		20	ns
t _{ohz}	Output Disable to Output in High-Z		20	ns
t _{oh}	Output Hold from Address Change	10		ns
t _{BE}	Byte Access Time		55	ns
t _{HZBE}	Byte Disable to High-Z Output		25	ns
t _{LZBE}	Byte Enable to Low-Z Output	10		ns

TIMING WAVEFORM OF READ CYCLE NO. 1

TIMING WAVEFORM OF READ CYCLE NO. 2 (OE CONTROLLED)(5,6)

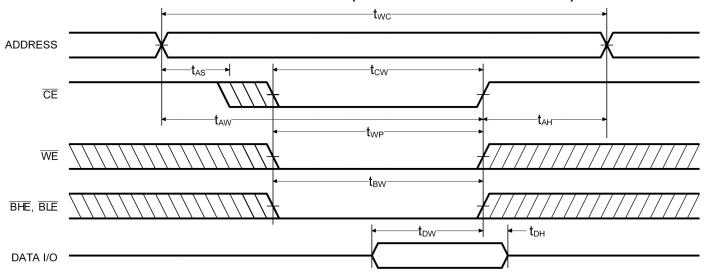
Notes:

- 1. Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to MAXIMUM rating conditions for extended periods may affect reliability.
- 2. Extended temperature operation guaranteed with 400 linear feet per minute of air flow.
- 3. Transient inputs with $V_{\rm L}$ and $I_{\rm L}$ not more negative than -2.0V and -100mA, respectively, are permissible for pulse widths up to 20 ns.
- 4. This parameter is sampled and not 100% tested.
- 5. WE is HIGH for READ cycle.
- 6. $\overline{\text{CE}}$ is LOW and $\overline{\text{OE}}$ is LOW for READ cycle.
- 7. ADDRESS must be valid prior to, or coincident with $\overline{\text{CE}}$ transition LOW.
- 8. Transition is measured ± 200 mV from steady state voltage prior to change, with loading as specified in Figure 1. This parameter is sampled and not 100% tested.
- Read Cycle Time is measured from the last valid address to the first transitioning address.

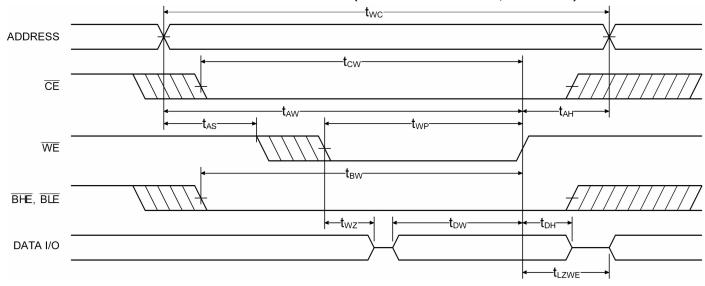


AC CHARACTERISTICS—WRITE CYCLE

 $(V_{CC} = 5V \pm 10\%, All Temperature Ranges)^{(2)}$


Curre	Down or to a		55	I I m i 4
Sym	Parameter	Min	Max	Unit
t_{wc}	Write Cycle Time	55		ns
t _{AW}	Address Valid to End of Write	50		ns
t _{cw}	Chip Enable to End of Write	50		ns
t _{AS}	Address Setup Time	0		ns
t _{wP}	Write Pulse Width	45		ns
t _{wR}	Write Recovery Time	0		ns
t _{DW}	Data to Write Time Overlap	25		ns
t _{DH}	Data Hold from End of Write Time	0		ns
t _{ow}	Output Active from End of Write	5		ns
t _{wz}	Write to Output in High-Z		20	ns
t _{BW}	Byte Enable to End of Write	45		ns

TIMING WAVEFORM OF WRITE CYCLE NO. 1 (CE CONTROLLED)



TIMING WAVEFORM OF WRITE CYCLE NO. 2 (BLE OR BHE CONTROLLED)

TIMING WAVEFORM OF WRITE CYCLE NO. 3 (WE CONTROLLED, OE LOW)

AC TEST CONDITIONS

Input Pulse Levels	GND to 3.0V
Input Rise and Fall Times	3ns
Input Timing Reference Level	1.5V
Output Timing Reference Level	1.5V
Output Load	See Figures 1 and 2

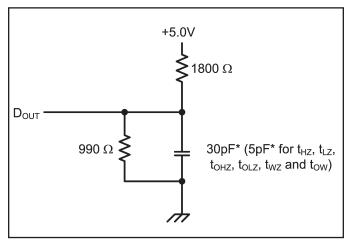


Figure 1. Output Load

$R_{TH} = 638.7\Omega$ $V_{TH} = 1.77 V$ $V_{TH} = 1.77 V$ $V_{TH} = 1.77 V$ $V_{TH} = 1.77 V$ $V_{TH} = 1.77 V$

Figure 2. Thevenin Equivalent

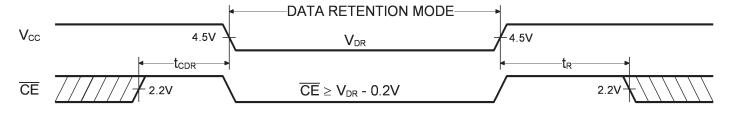
Note:

Because of the ultra-high speed of the P4C1041L, care must be taken when testing this device; an inadequate setup can cause a normal functioning part to be rejected as faulty. Long high-inductance leads that cause supply bounce must be avoided by bringing the $V_{\rm CC}$ and ground planes directly up to the contactor fingers. A 0.01 μF high frequency capacitor

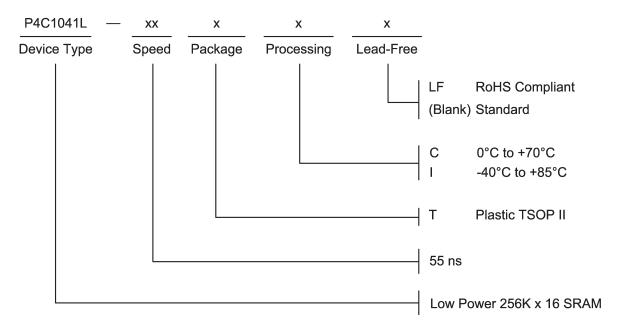
is also required between V_{cc} and ground. To avoid signal reflections, proper termination must be used; for example, a 50Ω test environment should be terminated into a 50Ω load with 1.77V (Thevenin Voltage) at the comparator input, and a 589Ω resistor must be used in series with D_{OUT} to match 639Ω (Thevenin Resistance).

TRUTH TABLE

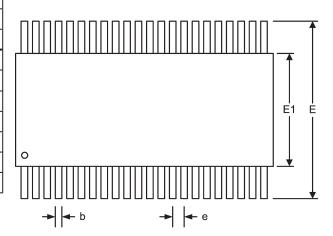
Mode	CE	ŌĒ	WE	BLE	BHE	I/O ₀ - I/O ₇	I/O ₈ - I/O ₁₅	Power
Powerdown	Н	Х	Х	Х	Х	High Z	High Z	Standby
Read All Bits	L	L	Н	L	L	D _{out}	D _{out}	Active
Read Lower Bits Only	L	L	Н	L	Н	D _{out}	High Z	Active
Read Upper Bits Only	L	L	Н	Н	L	High Z	D _{out}	Active
Write All Bits	L	Х	L	L	L	D _{IN}	D _{IN}	Active
Write Lower Bits Only	L	Х	L	L	Н	D _{IN}	High Z	Active
Write Upper Bits Only	L	Х	L	Н	L	High Z	D _{IN}	Active
Selected, Outputs Disabled	L	Н	Н	Х	Х	High Z	High Z	Active

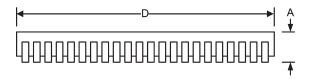

^{*} including scope and test fixture.

DATA RETENTION


Sym	Parameter	Test Conditions	Min	Max	Unit
V _{DR}	VCC for Data Retention	$\overline{\text{CE}} \ge \text{V}_{\text{CC}} - 0.2\text{V},$ $\text{V}_{\text{IN}} \ge \text{V}_{\text{CC}} - 0.2\text{V} \text{ or } \text{V}_{\text{IN}} \le 0.2\text{V}$	2.0	5.5	V
I _{CCDR}	Data Retention Current	V _{DR} =2.0V		30	μΑ
t _{CDR}	Chip Deselect to Data Retention Time	See Retention Waveform	0		ns
t _R	Operating Recovery Time		t _{RC}		ns

$\mathbf{LOW}\ \mathbf{V}_{\mathtt{CC}}\ \mathbf{DATA}\ \mathbf{RETENTION}\ \mathbf{WAVEFORM}$


ORDERING INFORMATION



Pkg#	T2		
# Pins	44		
Symbol	Min	Max	
А	0.039	0.047	
A_2	0.033	0.045	
b	0.012 0.0		
D	0.717	0.733	
е	0.031	5 BSC	
Е	0.453 0.473		
E1	0.392	0.408	

TSOP II SMALL OUTLINE PACKAGE

REVISIONS

DOCUMENT NUMBER	SRAM 142		
DOCUMENT TITLE	P4C1041L - LOW POWER 256K X 16 STATIC CMOS RAM		

REV	ISSUE DATE	ORIGINATOR	DESCRIPTION OF CHANGE
OR	Mar-2011	JDB	New Data Sheet